It seems that you're in Germany. We have a dedicated site for Germany. It is aimed at readers who are interested in learning methods for the design of feedback laws for linear and nonlinear multivariable systems in the presence of model uncertainties. Divided into two parts, the first covers relevant aspects of linear-systems theory, the second, nonlinear theory.

Author:Faejar Taut
Language:English (Spanish)
Published (Last):12 March 2010
PDF File Size:16.29 Mb
ePub File Size:16.52 Mb
Price:Free* [*Free Regsitration Required]

Instructor: Alberto Isidori Course web page: www. The course is addressed to students willing to expand their knowledge on the design of control systems in presence of model uncertainties.

The course covers, in a systematic manner, various fundamental methods of analysis based on the use of linear matrix inequalities and various design methods, to be used in the case of parameter uncertainties structured uncertainties as well as in the case of modeling uncertainties unstructured uncertainties. The course addresses the design of control possibly multi-input and multi-output systems, in order to meet two basic design requirements: stability and asymptotic performance in the presence of exogenous inputs.

Various analysis and design techniques are presented, to verify and guarantee that the required design performances continue to hold in the presence of parameter variations as well as in the presence of un-modeled parasitic dynamics. Most of the techniques in question repose on a systematic use of linear matrix inequalities.

Summary of some basic Systems and Control concepts. Stabilizability, detectability, separation principle. The stability criterion of Lyapunov for linear systems. The concept of robust stabilization: parametric perturbations and un-structured perturbations. Normal forms of a linear system. Relative degree, high-frequency gain, transmission zeroes.

Robust stabilization of systems having all zeros with negative real part: the case of relative degree 1 and the general case. The "gain" of a linear system: possible interpretations in terms of gain in the response to sinusoidal inputs and in terms of gain in the response to finite energy inputs.

The characterization of the gain in terms of dissipation inequalities. The fundamental Lemma for the characterization of the gain. The role of the linear matrix inequalities. Importance of the Hamiltonian matrices and of the algebraic Riccati equations. The small gain Theorem for the characterization of the robust stability in the presence of un-structured perturbations. Use of the small gain Theorem and of the linear matrix inequalities for the design of controllers guaranteeing robust stability.

Analogies and differences with the classical problem of stabilization via output feedback. The problem of asymptotic regulation: Stability and steady-state performance for classes of exogenous inputs disturbances and commands. The geometric approach to the problem of regulation: Design of the regulator in the case of full information and in the case of error feedback.

The problem of robust regulation in the presence of structured perturbations. Synthesis of the internal model and design of the stabilizer. The problem of robust regulation in the case of uncertainties on the exogenous input. Principles of adaptive control. Regulation in the presence of sinusoidal disturbance of unknown frequency.

Application of the techniques for robust regulation to the problem of active suppression of harmonic disturbances such as suppression of vibrations. English Italiano. Robust control Instructor: Alberto Isidori Course web page: www.

Program Summary of some basic Systems and Control concepts. Type of exam: Written test, Oral test Reference texts Notes prepared expressly for this course by the instructor. In addition, recommended readings include selected chapters of the textbook: A. Gahinet, P. Boyd, L. Sitemap -.


Alberto Isidori



Lectures in Feedback Design for Multivariable Systems


Related Articles